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Related topics
Magnetic moment, Bohr magneton, directional quantization, g-factor, electron spin, atomic beam, 
Maxwell velocity distribution, two-wire field.

Principle
A beam of potassium atoms generated in a hot furnace travels along a specific path in a magnetic field, 
which corresponds to a two-wire field. Because of the spin magnetic moment of the potassium atoms, 
the gradient of the inhomogeneous field produces a force, ortogonal to the direction of motion. The 
potassium atoms are thereby deflected from the straight ballistic trajectory according to their spin 
quantization. By measuring the density of the beam of particles in a plane of detection behind the 
magnetic field area it is possible to draw conclusions to the magnitude and direction of their magnetic 
moment.
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    Fig 1: Experimental setup; Stern-Gerlach apparatus with high vacuum pump assembly.
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Equipment

1 Stern-Gerlach apparatus 09054-88
1 Matching transformer 09054-04
1 Potassium ampoules, set of 6 09054-05
1 High vacuum pump assembly, compact 09059-99
1 Electromagnet w/o pole shoes 06480-01
2 Pole piece, plane 06480-02
1 Commutator switch 06034-03
2 Voltmeter, 0.3-300 VDC, 10-300 VAC 07035-00
2 Ammeter, 1 mA – 3 A DC/AC 07036-00
1 Meter, 10/30 mV, 200 °C 07019-00
1 Storage tray 413x240x100mm 47325-02
1 Cristallising dish, boro 3.3, 2300 ml 46246-00
1 Isopropyl alcohol, 1000 ml 30092-70
1 DC measuring amplifier 13620-93
1 Power supply variable 15 VAC/ 12 VDC/ 5 A 13530-93
2 Power supply 0-12 V DC/ 6 V, 12 V AC, 230 V 13506-93
1 Two-tier platform support 02076-03
3 Rubber tubing, vacuum, i.d. 6 mm 39286-00
2 Connecting cord, l = 250 mm, yellow 07360-02
2 Connecting cord, l = 250 mm, blue 07360-04
3 Connecting cord, l = 500 mm, red 07361-01
2 Connecting cord, l = 500 mm, blue 07361-04
1 Connecting cord, l = 500 mm, green-yellow 07361-15
1 Connecting cord, l = 750 mm, red 07362-01
3 Connecting cord, l = 750 mm, yellow 07362-02
1 Steel cylinder, nitrogen, 10 l, full 41763-00
1 Reducing valve for nitrogen 33483-00
1 Gas-cylinder Trolley for 10 L. 41790-10

Tasks

1. Recording the distribution of the particle beam density in the detection plane in the absence of 
the magnetic field.

2. Fitting a curve consisting of a straight line, a parabola, and another straight line, to the 
experimentally determined spatial distribution of the particle beam density. 

3. Observing the splitting of the particle beam in the magnetic field according to the spin 
quantization. Determining the dependence of the particle beam density in the detection plane on 
different values of the magnetic field gradient. 

4. Investigating the positions of the maxima of the particle beam density as a function of the 
magnetic field gradient. Calculation of the Bohr magneton.

Setup and procedure

In order to properly use the setup please first get through this experimental script and also the manual 
to the Stern-Gerlach (09054-88) apparatus.

1. Preparation of the vacuum system: evacuation
Prior to running the vacuum pump assembly please thoroughly read the supplied manuals from the 
manufacturer. Please note that the exact model of the pump assembly is the subject to be changed 
without notice. The pump stand consists of a rotary backing pump and a high vacuum turbo pump 
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system controlled by a microprocessor. The nitrogen bottle should be connected through the proper 
tubing to the venting valve of the pump stand. Generally the system should be vented with nitrogen only. 
Venting with the atmospheric air leads to the moisture absorption inside the apparatus and thus to 
extreme long pump times (more than 24 hours to reach 5*10-6 mbar). This would also lead to potassium 
oxidation and thus degradation of the setup functionality. Venting of the hot potassium with air is strictly 
forbidden due to its following vigorous burning in oxygen. Generally it is recommended for the user to get
acquainted with and program the controller according to the desired venting regime (e.g. its disabling 
during a student practicum). Furthermore the proper gas type regime of the turbo pump should be 
selected to optimize its efficiency and lifetime. It is generally discriminated between light gases 
(hydrogen, helium), medium gases, as in the present experiment, (nitrogen, oxygen) and heavy ones 
(xenon). The display of the controller should be routinely used to show the pressure inside the system. 
Time after time, but especially by the first start of the pumps, it is necessary to activate the purging valve 
of the rotary pump for a couple of hours to remove the water vapors or impurities, accumulated in the 
system.

2. Preparation of the vacuum installation: filling
Set the pressure reducer valve of the nitrogen gas bottle to the value below 500 hPa. Open the valves 
on the bottle and the pressure reducer. Activate venting from the pump assembly controller. Nitrogen 
flows in. 

3. Assembly of the Stern-Gerlach apparatus
Remove the clamp from the blind vacuum flange on the oven but leave it on its place whereas the 
apparatus is positioned horizontally. Generally vacuum systems are not designed to sustain over-
pressure, which can be easily prevented with this trick. It is recommended to use the system 
continuously without the clamp mentioned above. Under vacuum the atmospheric pressure creates 
sufficient force (roughly 100 N) to keep the vacuum connection sealed. During venting the blind flange 
will let the redundant nitrogen to escape by vibrating there and back and thus preventing over-pressure. 
Now remove the blind flange at the bottom of the setup, then quickly connect and clamp it to the 
pumping stand while nitrogen continuously flows through the system. 

The electromagnet should be situated on its base support and the vacuum setup clamped between its 
coils. Make sure that its pole shoes are perfectly aligned relative to the Stern-Gerlach pole pieces and 
consequently clamp it without any gap or tilt – this is absolutely important to conduct the magnetic flux 
properly. To achieve that, sometimes it is necessary to untighten several of the vacuum flange clamps of 
the Stern-Gerlach apparatus and adjust the rotational orientation of the system. After that the installation 
is complete, please stop venting and evacuate the apparatus.

The system should reach a pre-vacuum level (ca. 10-2 mbar) in less than a couple of minutes. If it fails to 
do that, there should be a larger vacuum leak present – please stop pumping immediately in order not to 
overload the vacuum pumps and try to fix it. In several hours the system should reach the desired high 
vacuum level of approximately 5*10-6 mbar or less. Please note that it is not possible to work with the 
setup at worse vacuum level since collisions of K atoms with air molecules cannot be then neglected. If 
the specified above vacuum level cannot be achieved, all flanges should be checked for smaller leaks by
dripping alcohol (e.g. isopropanol) on the connection peaces and observing the vacuum level. Any slight 
pressure change indicates such a small leak. The system should be vented with nitrogen and the 
problematic connection cleaned from dust, inspected for damages and reassembled very thoroughly.  

4. Charging the atomic beam furnace
Make sure that the clamp of the blind flange of the potassium oven has been removed and vent the 
system with nitrogen. Do not stop nitrogen venting by loading of potassium to prevent its contact with the
air oxygen. Remove the blind flange and also discard the safe transportation plastic cylinder from the 
furnace, insert the key for releasing the furnace threaded cap and turn to remove it. Then replace the 
blind flange back. Place a potassium ampule with its tip upwards into the steel cylinder of the ampule 
opener and cover it with its associated steel disc. Strike the steel disc with a hammer, thus cutting off the
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top of the ampule as shown in Fig. 2. Caution should be taken when handling potassium! Contact with 
the skin causes burns. Wear protective goggles and gloves! After the use, throw any parts which have 
been in contact with potassium into a vessel containing isopropanol (vigorous reaction is possible). The 
potassium injector must be pushed as quickly as possible in the opened ampule as far as it will go in 
order to grasp the potassium completely. Withdraw the injector, strip off glass debris with a spatula, 
remove the blank flange from the atomic beam furnace, hold the injector inside the furnace, push out the
potassium (using the injector like an ordinary syringe). Try to stick the clump of potassium to the back 
wall of the oven in order not to block the output atomic beam aperture on its front. Reinsert the furnace 
threaded cap and the blind flange. Stop venting and evacuate the setup to the high vacuum. Warm the 
oven up to the temperature of around 120° during an hour in order to degas it. After charging do not let 
any atmospheric air to come into the contact with oven, keep it always in vacuum or in nitrogen 
atmosphere till the new loading of potassium after some longer time period. After many working days the
complete removal and cleaning of the furnace with isopropanol and subsequent drying in a laboratory 
oven can be considered before a fresh portion of potassium will be introduced.
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5. Electric circuit assembly

The electrical circuit is shown in Fig.3. To carry out a measurement without field it is recommended first 
to demagnetize the pole shoes of the electromagnet. This is done by reducing the coil current in steps by
small amounts, reversing the polarity at each step using the commutation switch.

6. Conduction of the experiment
When carrying out an experiment, make sure that the voltages applied to the atomic beam furnace and 
the matching transformer correspond to those given in the supplied with the experiment data sheet. The 
voltage on the Langmuir-Taylor detector should be optimized for each detector individually. A too low 
voltage will lead to the slow or no reaction (ionization) on the atomic beam. A too high voltage will 
provide additional undesirable dark current. Check the furnace heating voltage. Make sure that the 
thermocouple is plugged into the proper connectors of the analog multimeter for direct indication of the 
temperature on its display. (Wrong connection will lead to a low read out and thus overheating of the 
furnace.) When making a series of measurements by changing the position of the detector always turn 
the micrometer screw in one direction only to avoid the effect of mechanical hysteresis. Conduct 
measurements only after reaching stationary conditions (every electrical parameter and the temperature 
remain constant). The geometry of the apparatus required for evaluation is likewise specified in the data 
sheet and its manual.

Theory and evaluation
1. Magnetic moment
A potassium atom has one outer shell electron in the ground state denoted 4s1. In this respect it is similar
to silver atoms (5s1 electron) which were used originally by Otto Stern and Walther Gerlach. The orbital 
angular momentum is equal to zero. The magnetic moment µ⃗ of the potassium atom due to this outer 

electron is therefore attributable only to its spin S.

µ⃗=−
e

2m
0

gs ⋅ S⃗ (1)
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If one considers the component Sz of the spin in a given z-direction, the system has two different 
possible orientations, characterized by the quantum numbers

ms=±
1

2

The z-component of spin takes the eigen value

Sz=ms ℏ=±
1

2
ℏ

The associated magnetic moment in the z-direction takes the value

µz=−
e ℏ

2m0

m=− µBm

with the Bohr magneton

µB=
e ℏ

2m
0

=9.274 ⋅ 10
− 24

Am
2

and

m=ms ⋅ gs

The literature value of the g-factor is

gs≈ 2.0023 (2)

Hence,

m=±1.0012≈ ±1 (3)

The purpose of the Stern-Gerlach experiment is to observe the directional quantization of the electron 

spin. Furthermore, according to which quantity is taken as known, the value of µz ;µB ;m  or gs  can

be determined.

Let the direction of the magnetic field with field strength H⃗ and induction B⃗ entered by the 
potassium atoms be taken as z-coordinate. The outer electrons of the potassium atom complete a 
classical precession movement about the field direction. The eigen values of the magnetic moment are 
therefore parallel or anti-parallel to the magnetic field:

µ⃗H=µz

H⃗

H
=− mµB

H⃗

H
(4)

2. Action of forces
The forces acting on the potassium atom are attributable to its magnetic moment and arise when the 
field is inhomogeneous:

F⃗=(µ⃗H g⃗rad ) B⃗=µ
0
(µ⃗H g⃗rad ) H⃗
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The expression in parentheses is to be understood as a scalar product whose differential operators act 

on B⃗ or H⃗ . The force is therefore determined by the gradient of the magnetic field:

F⃗=µ
0
µH( H⃗H g⃗rad)H⃗

We simplify this equation using the following equality 

1

2
grad H

2=(H⃗ g⃗rad) H⃗+ H⃗ x c⃗url H⃗

in which the vector product of H⃗ and c⃗url H⃗  vanishes since

c⃗url H⃗=0

Further, we can put

1

2
g⃗rad H⃗

2=
1

2
g⃗rad H

2=H g⃗rad H

i.e., only the scalar values H of the magnetic field are implied:

F⃗=µ0µH g⃗radH=µH g⃗rad B

For example, when using a Cartesian system of coordinates (x, y, z), the component of the force acting 
on the potassium atom in the z-direction equals

F z=µH

∂B

∂ z

or

F z=− mµB

∂B

∂ z
(5)

Assuming that the potassium atoms enter the magnetic field at right angles to it and leave it again after a

path Δl, and that ∂B/∂ z  is constant, the potassium atoms describe a parabolic path and are 
deflected more or less strongly in the z-direction according to their different velocities of entry, with 
corresponding changes in direction.

The position of the plane z = 0 in the magnetic field must still be determined accurately.
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3. Two-wire field
The pole shoes of a special shape can reliably simulate the magnetic field of two wires with electrical 
current in opposite directions as shown in Fig. 4. Their shape is plane-cylindrical and the outlines 
correspond to the two equipotential lines of the above-mentioned field.

The magnetization of the pole shoes should not reach saturation. In the treatment of the experimental 

problem with the two-wire model: The magnetic field H⃗ at some arbitrary point of space consists of the

two components, H⃗
1 and H⃗

2 as shown in Fig. 5. H⃗ ( r⃗ )=H⃗
1
( r⃗ )+H⃗

2
( r⃗ )
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Each of the two conductors contributes to the field as follows:

H⃗ i (r⃗ i )=
I⃗ i×r⃗ i

2πr i
2
,(i=1,2)

where

I⃗
1
=− I⃗

2
= I⃗

is the vector current in a single wire. Hence, for the arbitrary space point, specified by a vector r⃗ we 
can write down:

H⃗ ( r⃗ )= 1

2π
I⃗×( r⃗1r12 −

r⃗2

r2
2)

The value of the magnetic field strength is obtained by squaring this expression. 

H
2 ( r⃗ )= I

2

(2π)2( r⃗1r12 −
r⃗2

r2
2)( r⃗1r12 −

r⃗2

r2
2)= I

2

(2π)2( 1r12+ 1r22 −
2 r⃗1 r⃗2

r1
2
r2
2 )= I

2

(2π)2 ( 1

r1
2
+
1

r2
2
+
(r⃗1− r⃗2)

2
− r1

2
− r2

2

r1
2
r2
2 )

The vectors r⃗
1

 and r⃗
2 are perpendicular to the vector I⃗  and ( r⃗1− r⃗2)

2=4a2 thus:

H ( r⃗ )=
I
π

a

r
1
r
2

(6)

The gradient of the magnetic field H as a function of z can be calculated, using the expressions

r1
2=(a− y)2+(z+z0)

2

and

r2
2=(a+ y )2+(z+z0)

2

as

∂H

∂ z
= −

I a(z+z
0
)

π ⋅
(r12+r22)
r
1

3
r
2

3
= −

2 I a(z+z
0
)

π ⋅
a
2+ y

2+(z+z
0
)2

((a2− y
2)2+2(z+z

0
)2⋅ (a2+ y

2)+(z+z
0
)4)3/2

(7)

The surfaces of the constant field gradient ∂H /∂ z are shown in Fig. 6; on them also the force exerted 
onto a neutral potassium atom will be constant. The constant force surfaces in the neighborhood of the 
coordinate z = z1, which we want to calculate, are flat in a good approximation. 

In other words, we are looking for the plane z = z1, in which the field gradient is approximately constant 

and calculating its position relative to the plane with the wires, (z
0
+z

1
)=? . The gradient ∂H /∂ z

should be here independent of y for small y. Mathematically speaking, we develop the ∂H /∂ z into a 
Taylor polynomial in the variable y2 and look at which z-coordinate its first order term will be equal to 
zero.
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∂H

∂ z
(z=z

1
) ≈ −

2 I a (z0+z1)
π(a2+(z+z1)

2)2
⋅(1+ 2a

2
− (z+z1)

2

(a2+(z+z1)
2)2

⋅2 y
2)

The first order term of the Taylor polynomial would vanish if the following condition applies:

2a
2
− (z0+ z1)

2=0 or z1+ z0=a√2

Thus the field gradient is roughly constant in the plane which is a√2≈ 1.41a far away from the plane 
with wires. The present apparatus has a diaphragm system in which the length of the radiation window is

about 4 /3a in the y-direction. As Fig. 8 shows, the value of ∂H /∂ z  at y≈ 2 /3a  scarcely differs 

from its value at y = 0 (we have chosen here the plane z = 0 to be 1.3a away from the plane with 
wires). The condition for constant gradient is thus met to a large extent.

However we prefer technically to measure the field and not its gradient. From the relation (7) it is obvious
that the gradient is proportional to the field with the coefficient ε, which depends on the space 
coordinates.  

∂H

∂ z
=ε ⋅

H

a

We repeat now the trick with the Taylor expansion of the function ε(y,z) in y2 to find its value close to the 
z-axis (small y) as follows:

∂H

∂ z
= − 2H (z+z

0
) ⋅

a
2+ y

2+( z+ z0)
2

(a2− y
2)2+2(z+z0)

2
⋅ (a2+ y

2)+(z+z0)
4
≈ −

2H ( z+z0)
a
2+(z+z0)

2
⋅(1+ 3a

2
− (z+z0)

2

(a2+(z+z0)
2)2

⋅ y
2)

Please note that the first order term vanishes here at 3a
2
− (z+z0)

2=0 or z+ z0=a√3≈ 1.73 a . It 

means that in the plane at the distance a√3 from the plane with wires the proportionality of the 
gradient to the field is nearly constant. (But the field as well as its gradient change across this plane, 
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which is not the case for the a√2 one. Thus the latter plane is more practical for the experimental 

measurement.)

Nevertheless the last formula provides us the approximate value of the coefficient ε for any point in 

space. E.g. for the plane at a√2 ( 2a
2=(z0+z1)

2
) and y = 0 it will be. 

∂H

∂ z
=−

2H ( z1+z0)
a
2+(z

1
+z

0
)2

=
2√2

3a
⋅ H=0.9428

H

a
(8)

For the same plane but for the edge of the real extended beam y=2 /3a  it deviates only by 5%

∂H

∂ z
=−

2H ( z1+z0)
a
2+(z

1
+z

0
)2

(1+
4

81
)=
2√2

3a
⋅1.049 ⋅H=0.9894

H

a

The relation (8) can be then used to convert the magnetic field (measured value) into the magnetic 
gradient (value used in theoretical calculations) with a good approximation for the experimental beam.

The Stern-Gerlach apparatus is adjusted, so that the radiation window lies around 1.3a  (plane z = 0) 
from the plane with imaginary wires of the two-wire system (Fig. 7).
The calibration curve of the electromagnet (magnetic field H against the current in coils) is likewise given

for z≈ 1.3a , Fig. 9. Nevertheless the coefficient of the formula (8) can still be used since this plane is 

very close to the one by a√2 . Otherwise the more precise value can be obtained by calculation of the 

ε as above for z≈ 1.3a .
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data sheet.

Fig. 8: Behavior the of field gradient along the radiation 
window.



4. Particle track
The velocity ν of all the potassium atoms entering the magnetic field can be considered with sufficient 
accuracy to be oriented along the x-direction. The schematic trajectory of atoms is depicted in the Fig. 
10. The time

∆ t=
L

v
corresponds to passing through the magnetic field of the length L and the time

t=
l

v
corresponds to passing from the point of entry into the magnetic field to the plane of the detector.

We use the approximation of the constant force in the z-direction. Thus the potassium atoms of the mass
M acquire, due to the magnetic field gradient, the following momentum along the z-axis

M ż=F z ∆ t=F z

L

v
=
− mµB L

v

∂B

∂ z

It follows that the point of impact u (in the z-direction) of a potassium atom with the velocity v in the x-
direction and its initial position z, at a given field gradient, will be interconnected through the following 
relation:

u=z+
1

2
ż ∆ t+ ż (t− ∆ t )=z+(1− 12 L

l ) lv ż
where

1

2
ż∆ t

is the path element covered by a potassium atom during passing through the magnetic field in the z-
direction. Hence, there is the following fundamental relationship between the deflection u, the particle 
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velocity v and the field gradient
∂B

∂ z

u=z−
l L

M v
2(1− 12 L

l )mµB

∂B

∂ z
(9)

where

u− z>0 for m=+1
u− z<0 for m=− 1

Please notice that faster particles are deflected less into the z-direction than slower ones. Thus even 
initially an infinitesimally narrow potassium ion beam will be spread in the detector plane due to its 
thermal velocity distribution.

5. Maxwell velocity distribution
In order to produce a beam of potassium atoms of a considerable density, a furnace heated to a 
temperature T is used. In the furnace the evaporated potassium atoms are sufficiently numerous to 
acquire the maxwellian velocity distribution, i.e., the probability to find an atom with a velocity between
v and v + dv is given by the relation

e
−
Mv

2

2kT
⋅ v

2
dv

The current (number of particles pro time) in the detector plane for the atoms with velocities between v +
dv is proportional to: 1. the above-mentioned probability; 2. the velocity of arrived atoms; 3. the solid 
angle dΩ of the consideration (in other words to the product of these factors).

Thus the current of atoms which emerge from the opening in the furnace, and which have entered the 
magnetic field between z and z + dz, with a velocity between v and v + dv, will satisfy the following 
relation (normalized to the complete current through the analyzer):

d
2
n=

Φm( z)e
−
Mv

2

2kT
⋅ v

3
d v dz

2∫
0

∞

e
−
Mv

2

2kT v
3
dv

(10)
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In other words only those potassium atoms traverse the strip dz in time dt with velocity v at a later point 
in time corresponding to the transit time, which come from volume element dV existing in a region at 
depth vdt behind the opening in the furnace.

Indexing with m takes account of the two possible magnetic spin projections of the potassium atom. This 
leads to the factor of “2” in the denominator. From the symmetry it is clear that both directional 

orientations are equally probable. The function Φm(z) represents the spatial profile of the initial beam 

(after leaving the furnace), for particles of the spin orientation m. It arises through limitation of the atomic 

beam by appropriate systems of diaphragms. Ideally the function Φm( z) should resemble the Dirac 

delta function but in reality it has some spacial extension D along the z-axis (beam enclosure).

6. Particle current density after analyzer
Now we calculate the particle current density I(u) in the detector plane, as a function of the position u, 
from the distribution which depends on v and z. This will correspond to the signal at the detector. All 
potassium atoms entering the magnetic field at a height of z are spread in the detector plane according 
to their differences in velocity. The following conversion from v to u applies:

v
3
dv=

1

4
(
∂v

4

∂u
)du

We obtain the squared velocity by the transformation of equation (9):

v
2=

− l L

M (u− z)(1− 12 L

l )mµB

∂B

∂ z

we can get rid of the magnetic projection value and use the absolute value of the shift in the magnetic 
field instead:

v
2=

− l L

M|u− z|(1− 12 L

l )µB

∂B

∂ z

after squaring of the last expression and differentiating the following is obtained

v
3
dv=

− 1

2
( l L(1− 12 L

l )µB

∂B

∂ z

M )
2

du

|u− z|3

Furthermore,

M v
2

2kT
=
− l L(1− 12 L

l )µB

∂B

∂ z

2 k T
⋅
1

|u− z|

Now we introduce the two abbreviations to simplify the calculation:

q=
− l L(1− 12 L

l )µB

∂B

∂ z

2k T
(11)
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and                                                    n0=
[l L(1− 12 L

l )µB

∂B

∂ z ]
2

4M
2

∫
0

∞

e
−
Mv

2

2kT
⋅ v

3
dv

we substitute all the last expressions into and rewrite the equation (10) as following:

d
2
n=n0Φm(z)e

−
q

|u− z|
⋅

du

|u− z|3
dz (12)

We now integrate with respect to z and sum over the possible orientations m, and so derive the desired 
particle current density at position u:

I (u)=
∑
m

∫
− D

+D
d
2
n

du
=n

0
∫

− D

+D

u− z>0
Φ+1/2(z)e

−
q

|u− z| dz

|u− z|3
+n

0
∫

− D

+D

u− z<0
Φ

− 1/2(z)e
−

q

|u− z| dz

|u− z|3

By reason of the equivalence to the particle profile of the orientations ms = –1/2 and ms = +1/2,

Φ+1/2(z ) ≡ Φ
− 1/2(z)=I

0
(z)

and hence the current will look like:

n0∫− D

+D

I 0(z )e
−

q

|u− z| d z

|u− z|3
(13)

For a vanishing gradient of the magnetic field u≡ z and is independent of v. In this case, the particle 

current density in the measuring plane is defined as I
0
(u) .

7. Infinitesimal beam cross-section
This is the simplest (zero order) approximation which corresponds to the initially infinitely thin in the z-
direction atomic beam which will be spread only after the magnetic field according to its velocity 
distribution. The beam is centered at z = 0. We define the initial current distribution as

I0
(0)(z )=2D I 0δ(z) (14)

using the Dirac delta function δ

∫
− ∞

Z
0

δ (z)d z=Θ(z
0
)={0 for z0<01 for z

0
>0

For the atomic current in the detector plane we then get the integral 

I
(0)(u)=2Dn0 I0∫− D

+D

δ(z)e
−

q

|u− z| d z

|u− z|3

using the rules of the Dirac delta function integration we easily come to the solution:
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I
(0)(u)=2Dn0 I0

e
−

q

|u|

|u|3
(15)

The particle current density I
(0)(u) for narrow beam profiles is therefore proportional to the width 2 D 

determined by the diaphragm system. The position ue of the intensity maximum is found by taking the 
first derivative and setting it equal to zero:

d I
0(u)
du

=2Dn
0
I
0

q− 3|u|

u
5
e
−

q

|u|

From the condition

d I
(0)(u)
du

(ue
(0 ))=0 (16)

follows that both maxima ue
(0 )

will be symmetrical relative to zero and defined by the following 

expression:

ue
(0)=±

1

3
q=±

l L(1− 12 L

l )µB

∂B

∂ z

6 kT
(17)

The separation between the maxima (beam deflection) therefore increase proportionally to the magnetic 
field gradient.

8. Actual beam cross-section
A better compatibility of the calculation with the experiment is achieved by regarding the initial beam not 
infinitely narrow but extended (extension equals to 2D). We describe the beam profile as two steep 
straight lines with a parabolic apex (Fig. 12).

I0(z)=i0{
D+z

D−
1

2
p−
1

2

z
2

p

D− z

− D≤ z≤ − p

− p≤ z≤ p

p≤ z≤ D

d I
0

d z
=i

0{
1

−
z

p

− 1

− D≤ z≤ − p

− p≤ z≤ p

p≤ z≤ D

(18)

d
2
I
0

d z
2
=i

0{
0

−
1

p

0

− D≤ z≤ − p

− p≤ z≤ p

p≤ z ≤ D
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Fig. 12: Mathematical assumption of the particle
current density with a vanishingly small 
magnetic field.
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At the junction points the lines and the parabola have the same value of the first derivative. In this model,
I
0
(z ) is regarded as being twice differentiable. The particle current density I (u)  depends on the 

gradient of the magnetic field and hence on q. It has maxima at positions ue (q)  which differ to a 

greater or lesser extent from the positions ue
(0 )=±q/3 resulting from the zero order approximation 

assuming an infinitesimally narrow beam.

To determine the function ue (q) we start from the condition for the extremum

d I

du
(ue )=0 (19)

In calculating dI /du , the differentiation after u can be incorporated within the integral

d I

d u
=

d

d u
n
0∫− D

+D
I
0
(z )
e
−

q

|u− z|

|u− z|3
dz = n

0∫− D

+D
I
0
(z ) ∂

∂u

e
−

q

|u− z|

|u− z|3
dz

The integrand is not changed if ∂

∂u
is replaced by −

∂

∂ z

d I

d u
=− n0∫− D

+D

I 0(z)
∂

∂ z ( e
−

q

|u− z|

|u− z|3)dz
The differentiation operator can be now shifted to I

0  using the rules of partial integration and keeping 

in mind that the I0(D) = I0(-D) = 0 (this will zero the additional non-integral term by partial integration). 

d I

d u
=n

0∫ − D

+D dI 0(z)

dz

e
−

q

|u− z|

|u− z|3
dz

Finally we substitute the first derivative of I0 into the integral and split it into four integrals, each of which 
can be calculated individually:

d I

d u
=n0 i0(∫− D

− p e
−

q

|u− z|

|u− z|3
d z −

u

p
∫

− p

+p e
−

q

|u− z|

|u− z|3
dz −∫ + p

+D e
−

q

|u− z|

|u− z|3
dz +

1

p
∫

− p

+ p

(u− z)
e
−

q

|u− z|

|u− z|3
dz)

The first three integrals are solved by partial integration accordingly to the scheme:

∫ e
−
q

|t| 1

|t|3
dt=

q+|t|

q
2
t
e
−
q

|t| and the last one accordingly to ∫ e
−
q

|t| t

|t|3
dt=

1

q
e
−
q

|t|

After the integration and simplification of the expression we finally come to the following result:
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dI

du
=
n
0
i
0

pq
2
⋅ F (u) (20)

with the solution function

F (u)= − |u+ p|e
−

q

|u+ p|+|u− p|e
−

q

|u− p|+ p
q+|u+D|
u+D

e
−

q

|u+D|+ p
q+|u− D|
u− D

e
−

q

|u− D| (21)

As already discussed, after setting this expression equal to zero we can obtain the maxima of the current
peaks in the detector plane:

F(ue)=0 (22)

The function F(u) is point symmetrical relative to the center of coordinates F(-u) = - F(u). Thus also its 
maxima will be symmetrical relative to u = 0. It is therefore sufficient to restrict the evaluation to positive
ue (q) .

9. Measurement of the particle current density with a vanishingly small magnetic field
Fig. 13 represents an example of the particle current density measured with the detector (ionization 

current iI in pA) as a function of the coordinate u in the detector plane. The magnetic field is off, the 

pole pieces demagnetized to get rid of the rest-magnetization. It is not necessary in this case to 
determine the zero point for u. The experimental curve is fitted by the straight lines and the parabolic 
segment accordingly to the previous theoretical section. The following values for p and D are obtained in 
the units of relative scale (turning screw of the setup) and recalculated into millimeters accordingly:

p = 0.20 scale div. = 0.36 mm
D = 0.48 scale div. = 0.86 mm.

The value for 2D theoretically corresponds to the width of the beam aperture before the magnetic 
analyzer (approximation of the parallel atomic beam). In reality the latter width is smaller due to the slight
beam divergence.
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Fig. 13: Ionization current as a function of coordinate in the detector plane u. No magnetic field applied.
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10. Calculation of the position of the intensity maximum
When the experimentally assigned parameters (p, D) are used, the function F (u) in the equation (21) 

gives a curve strongly dependent on q (Fig. 14): The points of intersection ue with the u-axis provide us

the relation ue(q) which is depicted in the Fig. 15.

11. Calculation of the asymptotic behavior with large fields

For a sufficiently large field gradient and thus parameter q, ue  approaches the solution given by an 

infinitely narrow beam. The following approximation provides the first correction for the function ue (q)  

for larger magnetic fieldы. Since it is assumed here that

ue∼ q ≫ p ∼ D , (23)

a two dimensional Taylor series for F(u) on the parameters p and D can be developed. The auxiliary 
function f(u) and its derivatives (up to the fifth one) will support the calculation.

f (u)=u e
−
q

u f
(1)(u)=(1+ q

u )e
−
q

u f
(2)(u)=

q
2

u
3
e
−
q

u f
(3)(u)=

q
2

u
4 (qu − 3)e−

q

u

f
(4)(u)=

q
2

u
5 (q

2

u
2
− 8

q

u
+12)e−

q

u f
(5)(u)=12

q
2

u
6(5(qu − 1)+ 112 q

2

u
2 (qu − 15))e

−
q

u

Now we can represent the function F(u) from the equation (21) with the auxiliary function f(u) as:

F (u)=− f (u+ p)+f (u− p)+ p f
(1)(u+D)+ p f

(1)(u− D)

The absolute value operators were omitted due to the relations, u >0 and u >> D, p
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Fig. 14: Solution function F(u) for various parameters q. 
The numbers 0.49 to 5.96 correspond to q in mm.

Stern-Gerlach experiment

Fig. 15: Position ue of the zero point of the solution 
function F(u) as a function of the parameter q.



The two dimensional Taylor polynomial development of the F(u,p,D) will be:

0th order term: F (u ,0,0)=− f (u)+ f (u)+0=0

1st 
∂F (u ,0 ,0)

∂ p
p+

∂F(u ,o ,0)
∂D

D=(− f
(1)(u)− f

(1)(u)+f (1)(u)+ f (1)(u)) p+(f (2)(u)− f
(2)(u)) ⋅ 0 ⋅D=0

for simplicity only non zero expressions will be written down from here on

2nd order:
1

2( ∂
2
F(u ,0 ,0)

∂ p
2

p
2+2

∂
2
F(u ,0 ,0)
∂ p∂D

pD+
∂
2
F (u ,0 ,0)

∂D
2

D
2)=0

3rd order:

1

6 (∂
3
F (u ,0 ,0)

∂ p
3

p
3+3

∂
3
F(u ,0 ,0)

∂ p
2
∂D

p
2
D+3

∂
3
F (u ,0 ,0)

∂ p∂D
2

pD
2+

∂
3
F (u ,0 ,0)

∂D
3

D
3)= 16 (− 2 f (3)(u) p3+6 f (3)(u) pD2)

4th order:

1

24 (∂
4
F

∂ p
4
p
4+4

∂
4
F

∂ p
3
∂D

p
3
D+6

∂
4
F

∂ p
2
∂D

2
p
2
D
2+4

∂
4
F

∂ p∂D
3
p D

3+
∂
4
F

∂D
4
D
4)(u ,0 ,0)=0

5th order:

1

120 (∂
5
F

∂ p
5
p
5+5

∂
5
F

∂ p
4
∂D

p
4
D+10

∂
5
F

∂ p
3
∂D

2
p
3
D
2+10

∂
5
F

∂ p
2
∂D

3
p
2
D
3+5

∂
5
F

∂ p∂D
4
p D

4+
∂
5
F

∂D
5
D
5)(u ,0 ,0)=...

...=
1

120
(− 2 f (5)(u) p5+5 ⋅2 f

(5)(u) pD4)

At this point we stop the Taylor polynomial development and sum the expressions above together:

F (u)=p(D2
−
1

3
p
2)f (3)(u)+

p

12 (D4
−
1

5
p
4)f (5)(u)+... (24)

To determine the maxima ue we set F(u) = 0 as discussed and come to the following equation:

0=(D2
−
1

3
p
2)( que − 3)+

D
4
−
1

5
p
4

ue
2 (5( que

− 1)+ 112 q
2

ue

2 ( que − 15))
The summand on the left gives the known solution ue

(0 )=±q/3  if the smaller summand on the right is 

disregarded. When this is not done, it is permissible to replace ue  by ue
(0 )

 in the summand on the

right to obtain the correction of the first order (on D4 and p4).

The quantity in parentheses on the right becomes unity:

0=(D2
−
1

3
p
2)( que − 3)+

D
4
−
1

5
p
4

ue
2
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This equation can be rewritten as

q=3ue−
D
4
−
1

5
p
4

D
2
−
1

3
p
2

⋅
1

ue
(25)

or further to

ue=
q

3
+
D
4
−
1

5
p
4

D
2
−
1

3
p
2

⋅
1

q
(26)

where we again omit the expressions of higher correction order. The formula (26) provides us the first 
order correction to the maxima of the atomic current.

12. Measurements of the particle current density

The graphs in Figs. 16 and 17 show the particle current densities (measured as ionization currents iI ) 

in dependence on the current in the magnetic coils and thus the field gradient. The asymmetry in height 
of the intensity maxima is related to the fact that the gradient of the magnetic field is slightly different on 
the left and the right side of the beam.

Please note that a more precise calibration curve of the electromagnet (magnetic field vs. current in 
coils) can be measured by the user of the Stern-Gerlach apparatus him/herself, e.g. utilizing the PHYWE
Teslameter, digital, item no.: 13610-90. Otherwise the individually supplied calibration curve with each 
apparatus or the typical calibration curve in Fig. 9 should be used.

The field gradients at the different coil currents, according to the calibration curves of the magnet, are 
given in our example in the following Table:

Table

I, A ∂B/∂ z , T/m

0 0

0.095 25.6

0.200 58.4

0.302 92.9

0.405 132.2

0.498 164.2

0.600 196.3

0.700 226.0

0.800 253.7

0.902 277.2

1.010 298.6

The positions of the intensity maxima from Figs. 16 and 17 are shown in Fig. 18 as a function of the field 

gradient ∂B/∂ z
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13. Evaluation in the asymptotic limiting case

The graph in Fig. 19 shows ∂B/∂ z as a function of the expression q=3ue−
c

ue

where

c =
D
4
−
1

5
p
4

D
2
−
1

3
p
2

=0.781mm (27)
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Fig. 16: Ionization current as a function of the 
detector position (u) with small currents in the 
magnetic coils.

Fig. 17: Ionization current as a function of the detector position 
(u) with strong currents in the magnetic coils.

Fig. 18: Experimentally determined relationship 
between the position ue of the particle current  
maximum and the magnetic field gradient.

Fig. 19: Field gradient vs. a theoretical function of ue . 
Determination of the slope from asymptotic behavior.

TEP Stern-Gerlach experiment



TEP 

This relation corresponds to the theoretical expression (25).

Above the horizontal broken line we fit the experimental data with the following potential function:

∂B

∂ z
=A(3ue−

c

ue)
B

where A and B are fitting parameters. The fit results in 

Potential factor: B = 1.00 (straight line, or linear regression)

Standard deviation: S.D.(B) = 0.01.

Slope: A=44.8
T /m
mm

14. Determination of the Bohr magneton
We use the following values of the geometrical parameters of the Stern-Gerlach apparatus:

l = 0.455 m
L = 7 cm

a = 2.5 mm,

The absolute temperature in the furnace was
T = 453 K,

and the slope of the straight line in Fig. 19 is also known. Now we can calculate the Bohr magneton, in 
accordance with equations (11), (25) and (27), the value

µB=
2k T

l L(1− 12 L

l )
⋅

3ue−
C

ue

∂B

∂ z

=
2k T

l L(1− 12 L

l )A
= 9.51 ⋅10

− 24
Am

The deviation of about 2.5% from the literature value is very small and mainly attributable to the 
inaccuracy of calibration of the magnetic field.

15. Position of the intensity maxima as a function of field gradient

From the asymptotic behavior of ue at large values of the field gradient ∂B /∂ z the experiment 

gives, for the variable q:

q

− ∂B /∂ z
= 0.0223⋅ 10

− 3
m
2
T

− 1
.

The Fig. 20 represents the positions ue of the intensity maxima as a function of q. The solid line is the 

theory. The dashed line corresponds to the zero order theory (infinitely narrow beam). For a beam with 
some non zero waist the two maxima require some certain magnetic gradient to appear. Small gradient 
will correspond to a single central peak. As the gradient grows the two maxima appear (suddenly) to the 
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right and left of the central axis. By higher fields the splitting is proportional to the gradient. 
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Fig. 20: Measured values for the position ue of the particle beam current maxima as a 
function of the variable q. Solid line – theory. Dashed line – theory of the zero order 
(infinitely narrow beam)
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